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During EMT, cells dissolve strong contacts and leave orga-
nized sheets, shifting from apical–basal to front–rear polar-
ity. As they become mesenchymal, their motility and ability 

to break down extracellular matrix enables them to invade sur-
rounding tissue1,2. EMT is fundamental to development3, wound 
healing4,5 and the metastatic dissemination of tumor cells2,5,6.

Several studies have identified discrete intermediate ‘stages’ 
of EMT based on the expression of a handful of marker genes7–9. 
However, recent single-cell mass cytometry and RNA-seq analyses 
of breast cancer cells suggest that they fall along a continuum10,11. 
As such, it remains unclear whether or not cells exist in function-
ally discrete states during EMT, and the genetic circuitry that con-
trols the transition remains incompletely defined. Partial EMT is 
implicated in renal fibrosis12,13 and pancreatic ductal adenocarci-
noma14 and is positively correlated with tumor grade and metastatic 
potential in head and neck squamous cell carcinoma (HNSCC)15. 
Characterizing the nature of intermediate EMT would have an 
immediate impact on our understanding of disease.

Here, we apply single-cell RNA sequencing (scRNA-seq) coupled 
with unsupervised machine learning techniques16,17 to analyze a 
‘pseudospatial’18 model of EMT and identify regulators of its pro-
gression. We analyze a two-dimensional (2D) model system of spon-
taneous confluence-dependent EMT in human mammary epithelial 
cells19. Cells fell continuously along a gradient of EMT progression, 
revealing distinct waves of gene regulation. We incorporate a pooled 
single-cell CRISPR-Cas9 screen into our pseudospatial trajectory 
analysis to determine the dependency of EMT-associated signaling 
events on progression along the EMT continuum. These experi-
ments uncover a hierarchy of transcription factors and cell surface 
receptors that drive cells through EMT. Loss-of-function of one of 
several surface receptors slows the progress through EMT, explaining  

how cells transiting through a continuous process appear to be in 
one of several discrete stages in some experimental systems.

Results
Pseudospatial trajectory analysis of spontaneous EMT. To define 
the transcriptional program executed by normal human cells 
undergoing EMT, we devised an in vitro system in which cells from 
an epithelial colony migrate into unoccupied margins of the plate 
(Fig. 1a). We seeded MCF10A mammary epithelial cells19 within 
cloning rings as a high-confluence patch in the center of a tissue 
culture dish. We then removed the rings after which cells at the 
border can sense adjacent unoccupied space and spontaneously 
undergo an EMT. The spontaneous EMT in this system is analogous 
to that observed for MCF10A cells on wounding in scratch-wound 
healing assays20,21. Cells at the periphery of the patch acquired a 
spindle-like morphology and formed leading and protruding 
edges consistent with the acquisition of a mesenchymal phenotype 
(Supplementary Fig. 1). Cells collected from a single well of our 
assay expressed levels of E-cadherin and vimentin protein span-
ning a dynamic range that included those cultured at low or high 
confluence (Supplementary Fig. 1c,d). We dissected the patch 
to isolate ‘inner’ cells (2,440 cells) and ‘outer’ cells (2,564 cells). 
Inner and outer fractions were dissociated into single-cell suspen-
sions and subjected to scRNA-seq on the 10x Chromium platform  
(Fig. 1a and Supplementary Table 1).

Unsupervised clustering with t-distributed stochastic neighbor 
embedding (t-SNE) separated cells from inner and outer fractions 
(Fig. 1b), and expression of the mesenchymal marker VIM var-
ied in a reciprocal gradient to the epithelial markers CDH1 and 
DSP across embedded cells (Fig. 1c and Supplementary Fig. 2). 
However, we did not observe separated clusters of cells along this 
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axis of epithelial and mesenchymal marker expression, suggesting 
continual progression along an EMT rather than a sequence of 
discrete stages.

Individual cells at similar radii from the center of a patch could 
be in different stages of EMT, analogous to how cells proceed asyn-
chronously through temporal processes such as differentiation. 
To resolve cellular heterogeneity and recover the program that 
characterizes the progress of a cell through EMT, we ordered cells 
using Monocle16,17. Monocle organized cells along a linear pseu-
dospatial18,22 trajectory, with cells from inner and outer fractions 
concentrated at the beginning and end of its axis, respectively  
(Fig. 1d and Supplementary Fig. 3). Simulated sampling from the 
ends of the continuum and repeating our analysis excluded the 
possibility that this continuity was an artifact of trajectory analysis 
(Supplementary Fig. 4).

Classic markers of EMT varied in expression over the trajec-
tory. Protein and messenger RNA levels of the epithelial marker 
E-cadherin (CDH1) decreased as cells radiated from the center of 
the colony and over the pseudospatial trajectory, consistent with 
a spontaneous spatially determined EMT (Fig. 1e,f). Conversely, 
mRNA levels of VIM increased sharply in cells in the second half 
of the trajectory (Fig. 1f). Partial or intermediate EMT has classi-
cally been defined as the coexpression of epithelial and mesenchy-
mal traits23,24. Accordingly, cells positive for both CDH1 and VIM 
mRNA were most frequent in the second half of the trajectory 
(Supplementary Fig. 5). The population-level average expression of 
two epithelial markers, CDH1 and CRB3, did not vary drastically 
between inner and outer fractions (Supplementary Fig. 6), high-
lighting the value of single-cell techniques to capture the dynamics 
of gene regulatory changes associated with EMT.

We next identified genes regulated during EMT by performing 
differential expression analysis parameterized by the position of 
each cell along the trajectory (Supplementary Table 2). Clustering 
the 1,105 differentially expressed genes (DEGs) (likelihood ratio 
test; false discovery rate (FDR) < 1 × 10−10; area under the curve 
(AUC) >10 in at least one quantile, see Methods and Supplementary 
Table 3) revealed six groups of genes with similar kinetics. We per-
formed geneset analysis using the Gene Ontology biological pro-
cesses25,26 and MSigDB hallmarks molecular signature27 geneset 
collections. Genes in cluster 6 were upregulated and enriched for 
roles in translational regulation or EMT, while those in downreg-
ulated cluster 1 were linked to epidermis development. Cluster 5, 
highly expressed in the outermost regions of the pseudospatial tra-
jectory, was associated with the regulation of the cell cycle, consis-
tent with the relief of contact-mediated inhibition of proliferation 
(Fig. 1g,h and Supplementary Table 4).

Geneset analysis identified pathways upstream of pseudospace-
dependent gene expression. Cluster 1 was enriched for genes 
repressed by active KRAS signaling28,29, including some with roles 
in EMT. For example, keratin 1 (KRT1) was expressed in cells at 
the epithelial end of the trajectory but silenced as cells approached 
the border of the patch (Supplementary Fig. 7). Keratins traffic 
E-cadherin to the cell membrane, while vimentin does not30, and the 
shift in cytoskeletal filament composition from keratin- to vimen-
tin-containing is integral to EMT31. The EMT-associated cluster 6 
included the unfolded protein response (UPR) transcriptional reg-
ulator ATF4 whose increased expression preceded upregulation of 
genes in cluster 5, which was enriched for genes associated with the 
UPR (cluster 5 and 6, Fig. 1g,h and Supplementary Fig. 8), consis-
tent with a recent study demonstrating that the induction of EMT 
elicits protective activation of the UPR32.

Repeating our spatial EMT assay and single-cell transcrip-
tional profiling using primary human mammary epithelial cells 
(HuMEC) identified a similar linear pseudospatial trajectory and 
distribution of inner and outer cells (Supplementary Fig. 9a,b  
and Supplementary Table 5). The dynamics of epithelial and  

mesenchymal marker expression was comparable albeit with 
decreased CDH1 downregulation and more drastic upregulation of 
FN1 (Fig. 1i and Supplementary Fig. 9c). Having identified a spatial 
EMT in another epithelial cell type we sought to understand how 
this phenotype changes in response to a strong inducer of EMT.

Pseudospatial trajectory alignment elucidates transforming 
growth factor β (TGF-β)-driven full EMT. Activation of the TGF-β 
pathway leads to a powerful induction of EMT33,34. We repeated our 
pseudospace experiment, this time treating cells with TGF-β to pro-
mote mesenchymal conversion in MCF10A cells7. We sequenced 
transcriptomes of 2,121 inner and 2,116 outer colony cells that were 
segregated in t-SNE space but did not form coherent clusters, and 
whose expressed FN1 and VIM continuously varied (Supplementary 
Fig. 10). Thus, adding a strong extracellular signal promoting EMT 
did not drive cells into discrete stages. We therefore constructed a 
pseudospatial trajectory for TGF-β as well (Supplementary Fig. 11).

To compare cells from spontaneous and TGF-β-driven EMT 
trajectories, we used trajectory alignment35–37, a technique that 
employs Dynamic Time Warping38,39 to map cells onto a com-
mon pseudospatial axis (Fig. 2a). Along the aligned axis, CDH1 
and CRB3 were expressed in cells treated with TGF-β with similar 
kinetics to those undergoing confluence-mediated EMT (Fig. 2b), 
and consistent with reports that maintenance of cell–cell contacts 
prevents TGF-β stimulation from fully repressing an epithelial 
phenotype40. However, TGF-β exposure is sufficient to drive the 
expression of mesenchymal genes even in cells within the epithelial 
core. Additionally, only cells treated with TGF-β and positioned at 
the outer extreme of the trajectory expressed robust levels of FN1 
and CDH2, suggesting a full E- to N-cadherin switch. Exposure of 
HuMEC cells to TGF-β similarly led to a robust increase in VIM and 
FN1 at the beginning of the trajectory (Supplementary Fig. 12c); 
however, expression of CDH2 was not apparent. A broader geneset 
analysis comparing normalized average expression scores41 showed 
that TGF-β drove MSigDB Hallmark EMT genes higher and Gene 
Ontology biological process epidermis development genes lower in 
both MCF10A and HuMEC cells (Supplementary Fig. 13).

To identify genes responsive to TGF-β, we tested for differential 
expression as a function of TGF-β treatment, subtracting changes 
attributable to pseudospatial position. This analysis identified 
1,328 genes in 10 clusters with distinct TGF-β-dependent dynam-
ics (Fig. 2c, likelihood ratio test; FDR < 1 × 10−10 and |ΔAUC| > 0.02, 
see Methods, Supplementary Fig. 14 and Supplementary Table 6). 
For example, cluster 5 contained cell-cycle-related genes upregu-
lated along both trajectories (Fig. 2c and Supplementary Table 7). 
Cluster 4 contained genes upregulated toward the end of the spon-
taneous trajectory but maintained at high levels throughout the 
TGF-β-mediated trajectory (Fig. 2c). This cluster included two 
EMT-associated genes, one of which, NNMT, is a marker of the 
metabolic changes that accompany EMT42 (Fig. 2d). In contrast, 
clusters 6 and 8 contained EMT genes that peaked at the middle 
or end of the TGF-β-driven trajectory, respectively (Fig. 2c,e,f), 
but were unaltered or induced to a lesser degree in the spontane-
ous trajectory. Therefore, cells at comparable positions in spontane-
ous versus TGF-β-mediated EMT continua as defined by epithelial 
markers display pronounced transcriptional differences.

To explore which molecular regulators are responsible for shared 
and distinct patterns of spontaneous and TGF-β-mediated gene 
regulation during EMT we performed geneset analysis using the 
MSigDB Oncogenic Signature geneset collection. This geneset col-
lection is composed of genes whose expression increases or decreases 
as a function of perturbing signaling pathways43. Cluster 8 included 
genes upregulated as cells treated with TGF-β undergo EMT but 
are weakly altered during spontaneous EMT. These were enriched 
for genes expressed in response to KRAS signaling28, including 
genes with roles in EMT, such as CXCL1 and CXCL2, which induce  
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cellular migration44,45 (Supplementary Fig. 15). Conversely, cluster 
10 included epithelial marker genes downregulated early in sponta-
neous EMT and expressed at low levels in cells treated with TGF-β 

(for example KRT4 and KRT16) (Supplementary Fig. 16). These and 
several others are known to be repressed by active KRAS signaling28. 
This observation, together with pathway analysis of spontaneous  
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Fig. 1 | Pseudospatial trajectory reconstruction of spontaneous eMT reveals the transition as a continuum of epithelial–mesenchymal states.  
a, Schematic of spontaneous confluence-dependent EMT assay, cell isolation and pseudospatial trajectory reconstruction using Monocle2. Red circle 
denotes the area that defines inner and outer cells for macro-dissection. b,c, t-SNE of cells from our spontaneous EMT assay. Cells are colored according 
to the fraction from which they were isolated (b) or expression of the mesenchymal marker VIM (c). d, Trajectory of inner and outer MCF10A cells on 
spontaneous EMT progression. Arrow denotes progression of pseudospace. Insert, density of cells across pseudospace. e, Left, stitched brightfield images 
of an MCF10A colony at the end of our spontaneous EMT assay (scale bar, 2,000 µm). Right, top to bottom, E-cadherin and DAPI staining of cells from the 
center, middle and edge of the MCF10A colony (scale bar, 50 µm; representative fields from six images across three independent samples). f, Expression 
of epithelial and mesenchymal markers across pseudospace. Cells are colored as in b. g, Hierarchical clustering of kinetic curves for dynamically regulated 
genes across pseudospace for all 5,004 cells in our experiment (likelihood ratio test, FDR < 1 × 10−10 and AUC > 10). Rows represent row centered 
dynamics of gene expression. h, Geneset analysis using the Gene Ontology Biological Processes (GO-BP) and MSigDB Hallmarks geneset collections 
of gene clusters from g (hypergeometric test, FDR < 0.05). i, Expression of epithelial and mesenchymal markers across pseudospace in primary human 
mammary epithelial cells (HuMEC). Cells are colored as in b.
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EMT, implies that KRAS signaling is sustained throughout both 
spontaneous and TGF-β-driven transitions, suggesting it governs 
multiple points of the EMT continuum in normal cells.

Single-cell flow cytometric profiling of TGF-β-induced EMT 
described the transition as a three-state process7,46. In contrast to 
this ‘discrete’ view, we observed a continuous trajectory over which 
cells were distributed and along which many genes, including clas-
sic markers of epithelial and mesenchymal states, exhibit smooth 
changes in expression. Few cells undergoing spontaneous EMT 
expressed high levels of some mesenchymal markers, raising the 
possibility that we failed to capture some discrete, physiologically 
important ‘stages’ of EMT. However, exposing cells to TGF-β also 
drives them over a continuum, albeit one with different spatial pat-
terns of transcriptional regulation.

To investigate whether tumor cells in  vivo transit through an 
EMT continuum similar to the one observed in  vitro, we re-ana-
lyzed scRNA-seq data from patients with HNSCC15. The most 
mesenchymal tumor, as ranked by Puram et al15., expressed EMT 
genes at similar levels to cells at the outer end of our TGF-β-driven 
pseudospatial trajectory (Supplementary Fig. 17). Genes that make 
up early and late waves of KRAS-associated EMT in vitro (cluster 
10 and 8, respectively, Fig. 2c) were expressed in a manner consis-
tent with their partial EMT phenotypes assigned by Puram et  al.  
(Fig. 2g,h). To confirm that the similarity between our in  vitro 
model and the tumor cells was not limited to known EMT genes, 
we projected tumor cells onto our spontaneous and TGF-β-driven 
trajectories based on full transcriptome signatures using a near-
est-neighbor matching algorithm47 (Methods). Most tumor cells 
mapped to the end of our spontaneous EMT trajectory. In contrast, 
tumor cells projected more uniformly over the TGF-β-driven tra-
jectory (Fig. 2i). Individual tumors covered a substantial range of 
the trajectory, suggesting our TGF-β-driven model captures much 
of the transcriptional diversity present in a single patient sample. 
Finally, we tested whether Monocle2 could reconstruct pseudo-
spatial trajectories directly from tumor cells. For three of the four 
tumors with sufficient cells for Monocle analysis, the algorithm 
recovered a linear trajectory (Supplementary Fig. 18) with similar 
expression kinetics to in vitro trajectories (Supplementary Fig. 18). 
Taken together, these analyses suggest that the waves of gene regula-
tion that occur during EMT in vitro occur to varying extents in vivo.

A pooled loss-of-function screen identifies genes regulating 
EMT progression. We reasoned that certain regulators control 
passage through parts of the EMT continuum and a lack of one or 
more of these signals leads to accumulation of cells at ‘discrete’ EMT 
‘stages’. To identify regulators of progression along the continuum, 
we devised a high-throughput loss-of-function screen to probe the 
architecture of pathways with known involvement in EMT. Several 
groups recently devised methods for coupling CRISPR-based 
screens and a scRNA-seq readout, thereby capturing the identity of 
the single-guide RNA(s) (sgRNAs) that a cell received in conjunction  

with its gene expression profile48–52. Here we used a modified ver-
sion of CRISPR droplet sequencing (CROP-seq)52, which does not 
rely on the pairing of sgRNAs with distally located barcodes. We 
recently showed that this design is preferable to alternatives, avoid-
ing template switching between sgRNAs and associated barcodes 
during lentiviral co-packaging53.

We selected 16 cell surface receptors and 24 transcription factors 
for screening via CROP-seq in our 2D EMT system (Fig. 3a). These 
targets include receptors reported to activate KRAS (EGFR, MET, 
FGFR1, FGFR2, ITGAV, ITGB1 and ITGB3)54–57 along with others 
that drive Wnt, Notch and other pathways (Fig. 3b). Transcription 
factors that activate or repress EMT genes included both well-
characterized (SNAI1/2, TWIST1/2 and ZEB1/2) and recently 
reported (FOXD3, GATA6 and SOX9) regulators1. We repeated 
our in vitro EMT assay with a mixture of cells edited with sgRNAs 
to one of the 40 genes (or non-targeting controls, NTC) and sub-
jected them to scRNA-seq after being cultured with TGF-β (12,337 
cells) or without (17,093 cells). Unsupervised clustering analysis of 
cells treated with TGF-β identified prominent, clearly demarcated 
clusters of cells that retained expression of the epithelial markers 
CDH1 and CRB3 and failed to upregulate FN1 and VIM (Fig. 3c 
and Supplementary Fig. 19a,b). Cells expressing sgRNAs targeting 
TGFBR1 and TGFBR2 were enriched in these clusters (Fisher’s exact 
test; FDR < 1 × 10−50) (Fig. 3d,e and Supplementary Fig. 19c), while 
NTC sgRNAs were largely absent from them. Importantly, this dis-
tribution was not caused by the number of TGFBR1 and TGFBR2 
sgRNA cells in our screen (Fig. 3f). Cells with sgRNAs against 
TGFBR1 and TGFBR2 expressed lower levels of FN1 and VIM than 
those with NTC sgRNAs, indicating a failure to activate a TGF-β-
driven EMT (Fig. 3g) and confirming that CROP-seq can be used to 
identify molecular phenotypes along the EMT continuum.

We next sought to organize edited cells into a pseudospatial tra-
jectory. We compared NTC cells from inner and outer fractions, 
which revealed 1,197 and 761 DEGs in the spontaneous and TGF-
β-driven EMT, respectively, more than 80% of which were also 
found in unedited EMT experiments (Supplementary Fig. 20a–d). 
Pseudospatial trajectories reconstructed from NTC cells aligned to 
unedited trajectories with only minimal warping (Supplementary 
Fig. 20e–g). We then provided Monocle2 with all edited cells, which 
constructed trajectories along which EMT marker genes were 
expressed with kinetics similar to unedited cells (Supplementary 
Fig. 21). Differential expression analysis identified 978 and 4,079 
genes that varied across genotypes along spontaneous and TGF-
β-driven trajectories, respectively (Supplementary Fig. 22 and 
Supplementary Tables 8 and 9).

We hypothesized that loss of surface receptors that trans-
duce signals important for EMT, or the transcription factors they 
drive, would alter a cell’s progress along the trajectories. To deter-
mine whether loss-of-function of EMT-associated targets altered 
their progression along pseudospace, we divided the trajectory 
into bins according to the density of cells along spontaneous and  

Fig. 2 | Alignment of spontaneous and TGF-β-driven eMT pseudospatial trajectories identifies discrete waves along the eMT continuum.  
a, Dynamic time warping of pseudospatial trajectories allows for comparison of the dynamics of EMT progression along a common axis. b, Epithelial 
and mesenchymal marker expression across warped pseudospace (cells are colored-coded by treatment). c, Hierarchical clustering of kinetic curves for 
dynamically regulated genes that vary significantly between spontaneous (5,004 cells) and TGF-β-driven (4,237 cells) EMT trajectories (likelihood ratio 
test, FDR < 1 × 10−10 and |ΔAUC| > 0.02). Rows represent row centered dynamics of gene expression. Left, geneset analysis on gene clusters using the 
Oncogenic Signatures geneset collection (hypergeometric test, FDR < 0.05). Red and blue arrows denote association with increased or decreased activity, 
respectively. At right: geneset analysis on gene clusters using the Gene Ontology biological process and Hallmarks geneset collections (hypergeometric 
test, FDR < 0.05). d–f, Pseudospatial expression dynamics of EMT-associated genes that increase in expression at the end of the spontaneous trajectory 
and are highly expressed across the TGF-β-driven trajectory (d), toward the middle of the TGF-β-driven trajectory (e) and toward the end of the TGF-β-
driven trajectory (f). g–h, Box plots of early and late EMT scores of MCF10A cells at early and late positions in pseudospatial trajectories (mock, 1,020 
cells; TGF-β, 772 cells) and HNSCC tumors (6, 80 cells; 20, 321 cells; 5,41 cells; 18, 140 cells; 22, 119 cells; 25, 54 cells; 17, 330 cells; 16, 56 cells). Box plots 
depict the median score (bold line within box) with lower and upper hinges depicting the 25th and 75th percentiles, respectively. i, Density of cells across 
EMT trajectories after k-nearest-neighbor projection of HNSCC tumor cells to MCF10A cells under spontaneous and TGF-β-driven conditions.
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TGF-β-driven EMT trajectories resulting in 7 and 8 bins, respec-
tively. We then tested whether cells carrying sgRNAs against each 
target altered their distribution over these ‘regions’ of the aligned 
trajectories, relative to NTCs. We determined empirical false-dis-
covery rates of these tests by comparing enrichments of knockout 

cells to a random sampling of NTC cells (Supplementary Fig. 23, see 
Methods for details).

Of the 40 genes tested, 30 significantly shifted the pseudospatial 
positions of the cells when targeted via CROP-seq, with 11 over-
lapping between conditions (Fig. 4a,b and Supplementary Fig. 23). 
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Some targets were modestly enriched (less than two-fold) at a given 
pseudospatial position. For example, in the spontaneous EMT tra-
jectory, cells with sgRNAs targeting FZD7 were enriched at region 1, 
near the epithelial core of the trajectory, and region 3 (Fig. 4a). Other 
gene knockouts induced strong, focal accumulation of cells at one or 
two positions along the EMT continuum (Fig. 4a,b). Loss of EGFR 
induced focal accumulation at region 3 (Supplementary Fig. 24a). 
Similarly, cells with sgRNAs against MET were enriched in regions 2 
and more strongly in region 3. The majority of significantly enriched 

targets accumulated in region 3 directly preceding a decrease in 
the total number of CDH1 single-positive cells and an increase in 
CDH1/VIM double-positive cells (Supplementary Fig. 25).

Edited cells across the TGF-β-treated trajectory had a distinct 
set of genes from those that control progression through sponta-
neous EMT, reflecting the direct activation of EMT-associated 
transcription factors by SMAD signaling58. The pseudospatial 
regions encompassing the first half of the trajectory were strongly 
enriched for TGFBR1 and TGFBR2 knockouts (region 1–4, Fig. 4b  
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and Supplementary Fig. 24b). As in spontaneous EMT, the loss 
of numerous genes in TGF-β-treated cells concentrated them at 
defined pseudospatial positions. ZEB1, proposed to effect an irre-
versible switch to a mature mesenchymal state7, GATA6, NOTCH1 
and POU5F1 were concentrated beginning in region 3, suggesting 
that this position in the trajectory coincides with a decision point 
cells pass through during EMT.

Of the seven receptors in our screen known to activate Ras/
MAPK signaling, five (EGFR, MET, ITGAV, ITGB1 and FGFR1) 
altered the distribution of cells over the trajectory, and all but MET 
concentrated them at just one or two regions. Interestingly, only 
MET and ITGAV did so during spontaneous and TGF-β-driven 
EMT. In the spontaneous EMT trajectory, early accumulation of 
cells expressing sgRNAs against the receptor tyrosine kinases EGFR 
and MET55,56, suggested that one or both are responsible for the early 
wave of KRAS activity associated with exit from the epithelial state. 
In the TGF-β-mediated EMT trajectory regions 3 and 4 displayed a 
robust accumulation of cells expressing sgRNAs against the ITGAV 
integrin and regions 1, 5 and 7 were enriched for cells expressing 
sgRNAs against the tyrosine kinase FGFR159. Integrins function 
as heterodimers between ɑ and β subunits and ɑvβ1 heterodimers 
have been shown to mediate TGF-β signaling during fibrosis60, a 
process where EMT has an important role12,13,61. These precede the 
terminal EMT state in our TGF-β trajectory and may contribute to 
the KRAS-associated late EMT signature identified by our dynamic 
time warping analysis (Fig. 2c).

To understand how KRAS signaling drives cells through EMT, 
we performed an in vitro assay in the presence of small molecules 
that block RAS signaling. RAS exerts its regulatory program via 
activation of the RAF/MEK/ERK and PI3K/AKT pathways62,63. 
We therefore tested whether loss of MEK (via U0126 treatment) 
or PI3K signaling (via LY294002 treatment) is sufficient to block 
the exit from the epithelial state and/or acquisition of mesenchy-
mal phenotypes. Doses of both drugs were chosen to minimize 
the effects on cell viability (Supplementary Fig. 26). We used flow 
cytometry to determine the proportion of cells expressing the early 
EMT markers E-cadherin and vimentin and the mature mesenchy-
mal markers N-cadherin and cytoplasmic fibronectin. On sponta-
neous EMT, inhibition of PI3K activity led to a modest increase in 
cells expressing E-cadherin (Fig. 4c). In contrast, MEK inhibition 
led to a pronounced increase in E-cadherin and an accompanying 
decrease in vimentin (Fig. 4c,d). Inhibiting MEK prevented down-
regulation of E-cadherin even in the presence of TGF-β yet had no 
effect on the proportion of cells expressing vimentin, N-cadherin or 
fibronectin. Treatment of HuMEC cells with U0126 also decreased 
the induction of vimentin under spontaneous and TGF-β-driven 
EMT and decreased fibronectin accumulation after TGF-β expo-
sure (Supplementary Fig. 27).

To map the upstream regulators of this MEK-induced EMT 
program, we treated MCF10A undergoing spontaneous and TGF-
β-driven EMT with small molecules targeting RTKs and integ-
rins from the genetic screen (EGFR-erlotinib, MET-crizotinib, 
FGFR-infigratinib and ITGAV-cilengitide). Inhibiting EGFR 
led to an increase in E-cadherin-positive cells and a decrease in 
vimentin-positive cells only in spontaneous EMT, consistent with 
EGFR knockout inducing accumulation in pseudospace only in 
the absence of TGF-β (Fig. 4d). Conversely, MET inhibition led 
to increases in E-cadherin-positive cells in both spontaneous and 
TGF-β-driven conditions, reflecting the pausing of knockout cells 
along both EMT trajectories (Fig. 4d). FGFR and ITGAV inhibi-
tion did not significantly alter CDH1 and VIM levels suggesting 
that they lead to accumulation by alteration of other signaling 
pathways. We further examined the role of EGFR in regulating the 
transition into spontaneous EMT by treating cells with a higher 
dose of erlotinib and expanding our panel of marker proteins. In 
addition to confirming the regulation of E-cadherin and vimentin 

by EGFR, we observed that blocking EGFR signaling decreased 
the level of crumbs3 and desmoplakin during spontaneous EMT 
(Supplementary Fig. 28a,b). Brightfield images of spontaneous 
EMT colonies showed a decrease in cells undergoing individual 
migration, a key phenotypic characteristic of cells transitioning into 
a mesenchymal state (Supplementary Fig. 28c).

Although inhibiting MEK was not sufficient to prevent activa-
tion of the mesenchymal program in MCF10A in the presence of 
TGF-β, cells coexpressed E-cadherin and high levels of vimentin, 
N-cadherin and fibronectin protein (Fig. 4c and Supplementary 
Fig. 29). This suggests that activation of the RAF/MEK/ERK path-
way is required for the downregulation of the epithelial program in 
normal mammary epithelial cells, but that alternate pathways can 
activate the mesenchymal program when RAF/MEK/ERK signaling 
is blocked.

Lastly, we explored how the expression of factors that alter the 
accumulation along EMT in MCF10A relate to the diverse EMT 
phenotypes observed in HNSCC tumors. Hierarchical clustering 
of the mean expression level of cell surface receptors identified a 
strong relationship between receptor expression and the extent of 
EMT across tumor samples (Supplementary Fig. 30). Expression of 
FZD2, FZD7, FGFR1 and PTCH1 was inversely correlated with lev-
els of EMT genes. With the exception of PTCH1, edited cells lacking 
these genes were enriched at the beginning of our EMT trajectories 
(Supplementary Fig. 30). Conversely, tumors expressing high levels 
of EMT genes (Supplementary Fig. 30) also expressed MET, ITGAV, 
ITGB1, TGFBR1 and TGFBR2.

Discussion
The integration of single-cell trajectory analysis and pooled genetic 
screening has the potential to map the genetic circuits that control 
progression across biological transitions. Understanding the regula-
tion of EMT is a fundamental goal in developmental and cancer 
biology and has the potential to yield new therapeutic opportuni-
ties for intervention in cancer. In contrast to numerous reports of 
‘partial’, ‘hybrid’ or ‘intermediate’ EMT stages, both our analysis and 
recent scRNA-seq and mass cytometry studies of a cancer line10,11 
indicate that cells are organized along a continuum during EMT.

Our CRISPR/scRNA-seq loss-of-function screen reconciles 
these two conflicting views of gene regulation in EMT. Previously, 
we showed that a loss-of-function mutation can create a branch 
from the wild-type trajectory by which cells execute an alternative 
gene expression program64. Here, we show that transcription factor 
and signaling receptor gene knockouts can cause cells to accumulate 
at defined points along the EMT continuum, implying the existence 
of a sequence of ‘checkpoints’ to progress through it. Therefore, 
although cells fall along a transcriptional continuum during EMT, 
genetic insults that disable key signaling pathways could enrich a 
particular gene expression profile within a cell population, creat-
ing the impression of a stable intermediate phenotype. Consistent 
with this finding, recent single-cell profiling of HNSCC found evi-
dence for diverse partial EMT states at the leading edge of tumors15, 
which could arise from genetic heterogeneity amongst cancer cells. 
Our analysis suggests that local variation in signaling in key path-
ways could also contribute substantially to the EMT phenotype of 
a tumor.

Several large modules of genes with distinct wave-like patterns 
of regulation during spontaneous- or TGF-β-mediated EMT were 
enriched for targets of KRAS, which may, therefore, be involved 
throughout the EMT continuum. KRAS signaling can be initiated 
via various upstream signals, making it difficult to pinpoint the sig-
naling that is driven at each point on the continuum. Focal accumu-
lation of cells lacking particular effectors of KRAS signaling early in 
spontaneous (EGFR and MET) and late in TGF-β-mediated (FGFR2 
and ITGAV) EMT suggests that the cell responds to a sequence of 
cues to execute steps in the program. TGF-β and RAF/MEK/ERK 
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are known to be involved in EMT, but how the two pathways interact 
during the process is not clear. Here, we show that in the absence of 
exogenous TGF-β, inhibiting RAF/MEK/ERK is sufficient to block 
exit from the epithelial state and prevent activation of the mesen-
chymal gene expression program (Fig. 4e). However, when cells are 
exposed to exogenous TGF-β, this pathway can ‘shortcut’ MEK to 
activate the mesenchymal program directly. Further, we find that 
loss of MEK activity can lock cells in a partial EMT-like state where 
cells coexpress E-cadherin and high levels of early and late mesen-
chymal markers. Taken together, these observations point to the 
existence of ‘checkpoints’ in the EMT continuum at which cells can 
arrest and accumulate, creating the impression of discrete stages in 
bulk cell assays (Fig. 4f).

Our study combines single-cell trajectory analysis with high-
throughput pooled loss-of-function screening, which constitutes 
a powerful approach for identifying upstream signals of pathways 
that regulate cellular phenotypes. We expect that this methodology 
will shed light on the genetic architecture that governs not just EMT 
but diverse biological processes in development and disease. More 
generally, the observation that interrupting a signaling pathway can 
enrich a particular transcriptional state within a cell population will 
inform ongoing debates surrounding the definitions of cell type and 
state and the delineation of human cellular ontology.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
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Methods
Cell culture. MCF10A breast epithelial cells were purchased from ATCC and 
used within ten passages. HuMEC were purchased from ThermoFisher Scientific 
and passage 4 cells were used for all experiments. Cas9-expressing MCF10A 
(MCF10A-Cas9) were generated by transduction with lentiCas9-blast lentivirus 
(Addgene) and selected with 10 µg ml−1 blasticidin (ThermoFisher Scientific) 
72 h post-transduction. Cells were cultured at 37 °C and 5% CO2 in MCF10A 
media composed of DMEM/F12 (ThermoFisher Scientific) containing 10% 
fetal bovine serum (ThermoFisher Scientific), 1% Pen-Strep (ThermoFisher 
Scientific), 10 ng ml−1 epidermal growth factor (EGF) (LC Labs), 5 µg ml−1 insulin 
(ThermoFisher Scientific), 10 ng ml−1 cholera toxin (List Labs) and 1 µg ml−1 
hydrocortisone (Sigma).

2D in vitro EMT assay. Before cell seeding the cloning area of a 4.7 mm diameter 
cloning ring (Sigma) was marked on the bottom of plates and 2.5 × 105 MCF10A, 
HuMEC or MCF10A-Cas9 cells were seeded within cloning rings placed in the 
center of the marked well of a six-well tissue culture dish and cells allowed to 
adhere overnight. Cloning rings were then removed, and wells were washed twice 
with 3 ml of Dulbecco’s PBS (ThermoFisher Scientific) to remove non-adhered 
cells and MCF10A media added. For TGF-β-treated cells, 4 ng ml−1 TGF-β (Pepro 
Tech) was added to media and TGF-β was replenished every 48 h. Seven days 
after the cloning rings were removed, inner and outer cell fractions were collected 
by scraping away outer and inner cells, respectively, using a cell lifter (Costar) 
and remaining cells were dissociated using TrypLE (ThermoFisher Scientific). 
The area from which cells were scraped was determined by the outer diameter of 
the previously marked cloning ring and wells were inspected under a dissecting 
microscope to assess the purity of the fraction.

Crystal violet and E-cadherin immunofluorescence staining. MCF10A colonies 
were rinsed with DPBS, fixed by incubating with 4% paraformaldehyde (EM 
grade, Electron Microscopy Sciences) for 20 min followed by incubation with 
pure ethanol for 10 min at room temperature. For crystal violet staining, fixed 
colonies were incubated in 0.05% w/v crystal violet (Sigma) in water for 20 min and 
excess crystal violet removed by washing 5× for 5 min with DPBS. For E-cadherin 
staining, fixed colonies were blocked by washing 3× for 5 min in IF buffer (0.1% 
Triton x-100 (Sigma) and 2% bovine serum albumin (BSA, Fisher Scientific) in 
PBS). Colonies were then incubated in IF buffer containing mouse anti-E-cadherin 
antibody (Cell Signaling) for 2 h at room temperature and washed with IF buffer. 
For imaging, colonies were incubated for 1 h in IF buffer containing Alexa-488 
conjugated goat anti-mouse IgG in IF buffer (Invitrogen), washed with IF buffer 
and 5 µg ml−1 Hoechst 33342 (Invitrogen) added to colonies. Brightfield imaging 
of crystal violet stained whole colonies was performed on a Zeiss Axio Observer 
by stitching whole well 10× images according to manufacturer’s instructions (Carl 
Zeiss Microimaging). Immunofluorescence imaging of E-cadherin stained colonies 
was performed by taking representative fields from the center middle and edge  
of the colony.

Flow cytometry for EMT marker protein levels. MCF10A cells were plated at the 
center of wells in six-well plates as previously described. Two hours after plating, 
colonies were washed with PBS and medium was replaced. After 7 d, cells were 
harvested using TrypLE, washed twice with PBS, resuspended in 500 µl of PBS, 
fixed by the addition of 5 ml of ice-cold ethanol added dropwise while vortexing 
and samples stored at −80 °C. Fixed samples were washed and blocked in PBS 
containing 1% BSA (Sigma). Samples were split into two and one aliquot incubated 
overnight with mouse anti-cytoplasmic fibronectin antibody (Abcam, ab6328) and 
rabbit anti-E-cadherin antibody (Cell Signaling, 3195) and the other incubated 
with rabbit anti-vimentin antibody (Cell Signaling, 5741) and mouse anti-N-
cadherin antibody (Cell Signaling, 14215). For spontaneous EMT, cells treated with 
500 nM erlotinib (Supplementary Fig. 28), fixed cells were incubated with a mix 
of rabbit anti-E-cadherin antibody (Cell Signaling, 3195), rat anti-CRB3 antibody 
(Abcam, ab180835) and mouse anti-desmoplakin I + II antibody (Abcam, ab16434) 
or a mix of rabbit anti-vimentin antibody (Cell Signaling, 5741) and mouse anti-
pan-keratin antibody (Cell Signaling, 4545). Antibody incubations were performed 
in PBS containing 1% BSA and 0.1% Triton X-100 (Sigma). Samples were washed 
three times with PBS containing 0.1% Triton X-100, incubated for 1 h with goat 
anti-rabbit Alexa 647 and goat anti-mouse Alexa-488 secondary antibodies in 
PBS containing 1% BSA and 0.1% Triton X-100, washed three times with PBS 
containing 0.1% Triton X-100 and resuspended in PBS for analysis on an LSRII 
flow cytometer (BD Biosciences) as depicted in Supplementary Fig. 32.

Small-molecule inhibition of KRAS-MEK-ERK pathway activators and flow 
cytometry for EMT markers. The MEK inhibitor U0126, the PI3K inhibitor 
LY294002, the EGFR inhibitor erlotinib, the MET inhibitor crizotinib and the 
FGFR inhibitor infigratinib were purchased from LC Laboratories and resuspended 
in DMSO. The ITGAV inhibitor cilengitide was purchased from Selleck Chemicals 
as a 10 mM solution in DMSO. To determine the highest inhibitor concentration 
that does not have a negative effect on cell viability, we seeded MCF10A cells at 
2.5 × 104 cells per well in 96-well plates. After allowing cells to attach overnight 
wells exposed for 96 h with increasing doses of each inhibitor or DMSO vehicle 

alone as shown in Supplementary Fig. 23. The highest concentration of each 
inhibitor that exhibited 90% or higher control of cell growth was used to determine 
the effect of target inhibition on the induction of a spontaneous and TGF-β-driven 
EMT. MCF10A and HuMEC cells were plated at the center of wells in six-well 
plates as previously described. Twenty-four hours after plating, colonies were 
washed with PBS and cells were pretreated for 1 h in media with or without 1 µM 
U0126, 1 µM LY294002, 100 nM erlotinib, 1 µM crizotinib, 1 µM infigratininb 
or 10 µM cilengitide. After preincubation, medium was replaced with medium 
with or without 4 ng ml−1 TGF-β1 as well as any inhibitor with which cells were 
pretreated. TGF-β1 was replenished every 48 h. After 7 d, samples were harvested 
and processed for flow cytometry of EMT marker protein levels as described above.

Construction of single-cell RNA libraries and sequencing. Single-cell 
suspensions of inner and outer cells from Mock and TGF-β-treated MCF10A 
and HuMEC cells were washed and resuspended in PBS containing 0.04% 
ultrapure BSA (ThermoFisher Scientific) at 1 × 106 cells per ml. For pseudospatial 
experiments in the absence or presence of TGF-β presented in Figs. 1 and 2, 
2,000–3,000 cells were captured on the Chromium platform (10X Genomics) 
using one lane per fraction. Single-cell mRNA libraries were built using the 
single-cell 3’ solution V1 kit, libraries sequenced on an Illumina NextSeq 
500/550 using 75 cycle high output kits (Read 1 = 64, Read 2 = 5, Index 1 = 14 
and Index 2 = 8) and data preprocessed using the Cell Ranger 1.3.1 pipeline (10X 
Genomics). CROP-seq pseudospatial libraries were generated in a similar fashion 
capturing 7,000–9,000 cells per fraction. The aggregation option in Cell Ranger 
was used to normalize libraries to the equivalent number of mean reads per 
cell specifically: 47,905 and 30,636 mean reads per cell for initial MCF10A and 
HuMEC pseudospatial experiments, respectively, and 43,557 mean reads per cell 
for CROP-seq experiments. The percentage of reads mapping to the transcriptome 
for all samples was between 77.8% and 84.1%. We observed a median of 12,380 and 
8,672 unique molecular identifiers (UMI) per cell for initial MCF10A and HuMEC 
pseudospatial experiments, respectively, and 13,951 median UMIs per cells for 
CROP-seq experiments. Additional metrics for each individual scRNA-seq library 
can be found in Supplementary Table 1 and Supplementary Fig. 31.

t-SNE. We performed principal component analysis (PCA) on a matrix  
composed of cells and gene expression values for genes expressed in more  
than 50 cells, reduced dimensions to the top 25 principal components and  
a t-SNE was initialized in this PCA space to reduce to 2 t-SNE dimensions  
using the reduceDimension function in Monocle2 specifying num_dim = 25,  
max_component = 2, norm_method = log and reduction_method = t-SNE.  
To visualize the gene expression level of EMT markers in t-SNE space the gene 
expression levels of CDH1, DSP and VIM in every cell was normalized by the 
library size of each cell (the Size_Factor in Monocle2), a pseudocount of 0.1 was 
added and values log10 normalized.

Pseudospatial reconstruction of single-cell transcriptomes. Trajectories 
were constructed according to the procedure recommended in the Monocle2 
documentation (http://cole-trapnell-lab.github.io/monocle-release/
docs/#constructing-single-cell-trajectories). Briefly, genes used to order cells were 
selected by comparing the inner and outer cell fractions in the assay. For each cell 
type (MCF10A/HuMEC), differential gene expression analysis was performed 
between differentialGeneTest() function in Monocle2 (refs. 17,64). Each gene was 
fitted to a generalized linear model via the formula ‘y ~ cell_fraction’, specifying 
a simple two-group contrast between the fractions. The response (the size-factor 
adjusted UMIs for the gene) was modeled as a negative binomially distributed 
random variable. Testing for significant genes was conducted by comparing the 
model of each gene against a reduced model ‘y ~ 1’ via a likelihood ratio test.

The top DEGs (likelihood ratio test, FDR, q < 1 × 10−10 and absolute of the 
log2 fold-change > 1) were chosen as ‘ordering genes’ to recover pseudospatial 
trajectories using the setOrderingFilter(), reduceDimension() and orderCells() 
functions in Monocle2 using default parameters with the exception of setting 
ncenter = 500 during dimensionality reduction. Expression of key EMT markers 
across pseudospace was visualized using the plot_genes_in_pseudotime function 
in Monocle2 specifying a minimum value of 0.1 (min_expr = 0.1).

Detection and visualization of spatially dependent genes. To extract and 
visualize genes that vary over a trajectory (beyond the variability one would expect 
across unordered cells), we used the procedure recommended by the Monocle2 
documentation (http://cole-trapnell-lab.github.io/monocle-release/docs/#finding-
genes-that-change-as-a-function-of-pseudotime). To identify changes in gene 
expression across pseudospatial trajectories we fit splines with three degrees 
of freedom to capture the dynamics of gene expression over psedusopace and 
tested for differential gene expression analysis using a full model of ‘y ~ sm.ns 
(pseudospace, df = 3)’, which encode the position of a cell on the trajectory as a 
continuous covariate. To further filter genes by those with the largest effect size we 
divided pseudospace into five quantiles, calculated the AUC for each gene at each 
quantile and filtered DEGs to those having an AUC > 10 in at least one quantile 
and an FDR of <1 × 10−10. DEGs were variance stabilized and scaled, clustered and 
visualized using the pheatmap function from the R package pheatmap specifying 
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ward.D2 as the clustering method. To identify biological processes and pathways 
enriched in clusters of DEGs across pseudospace we performed hypergeometric 
testing using the piano R package specifying genes expressed in more than 50 cells 
as the background set.

Calculation of aggregate gene expression scores. To determine the extent to 
which cells in different samples activate certain gene expression modules we 
calculated a normalized aggregate expression score for each cell for defined 
genesets. For a matrix of genes and cells, log10 normalized gene expression 
was defined for genes in each set after library size normalization and addition 
of a pseudocount of 1. For each cell, we then calculated the mean normalized 
expression level of genes in the geneset and mean-centered and variance scaled 
mean normalized expression values across all cells. The compare_means 
function from the ggpubr package was used to determine the significance in 
changes in scores between endpoints in MCF10A and HuMEC EMT trajectories 
(Supplementary Fig. 13) specifying the wilcox.test as the method and using the 
Holm procedure (holm) to correct for multiple hypothesis testing.

Dynamic time warping of pseudospatial trajectories. Alignment of Mock 
and TGF-β-treated trajectories for MCF10A, MCF10A-Cas9 and HuMEC 
pseudospatial trajectories was performed as described35, setting the Mock and 
TGF-β-treated cell trajectories as the reference and query, respectively. Briefly, 
to arrive at a common pseudospatial axis, trajectories were aligned based on 
the intersect of genes used for ordering Mock and TGF-β-driven trajectories 
where pseudospace values were scaled from 0–100, smoothed splines were fitted 
to each gene using the genSmoothCurves function in Monocle2, splines were 
variance stabilized and scaled before alignment using the dtw function from the 
DTW R package using the following options: step pattern = rabiner Juang step 
pattern (type = 3 and slope.weighting = c), open.begin and open.end = FALSE. 
To identify genes that describe the differences in the interaction between 
pseudospace and TGF-β treatment across Mock and TGF-β-driven trajectories 
we performed differential gene expression analysis using a full model of ‘y ~ 
pseudospace*treatment’ and a reduced model of ‘y ~ pseudospace’. We isolated 
DEGs with the largest differences between treatments by dividing pseudospace 
into five equally spaced quantiles, calculating the AUC (calculated using spline 
interpolation) for each treatment within each quantile and identifying genes 
with a relative difference in AUC (relative AUC difference = abs(AUC1 − AUC2)/
sum(AUC1 + AUC2)) larger than 0.02 in at least one quantile and an 
FDR < 1 × 10−10.

Preprocessing of the HNSCC dataset. Processed data from the scRNA-seq of 
HNSCC tumors described in Puram et al.15 were downloaded from the GEO 
Omnibus database (GSE103322) and a Monocle2 Cell Dataset (cds) object was 
created using gene expression and metadata available in GSE103322_HNSCC_
all_data.txt.gz specifying a lower detection limit of 0.1 and choosing tobit as the 
expression family. Expression values were then converted to mRNA per cell using 
the Census64 algorithm implemented in the relative2abs function in Monocle2 after 
which a new cds object was created specifying negbinomial.size as the expression 
family. For all analyses, normal cell types and cancer cells from lymph node 
metastases were excluded. Additionally, only cells that were not processed using 
the Maxima reverse transcriptase enzyme were chosen for analysis as Puram et al. 
found that the use of Maxima enzyme could introduce a batch effect. HNSCC 
tumor samples that had at least 40 cells after applying the exclusion criteria 
described above were chosen for further analysis.

k-nearest-neighbor projection of HNSCC tumor cells onto spontaneous 
and TGF-β-driven MCF10A EMT trajectories. We used PCA to reduce the 
dimensions of a matrix composed of HNSCC tumor cells and MCF10A cells from 
either spontaneous or TGF-β-driven EMT conditions and gene expression values 
for genes expressed in more than 50 cells to the top 20 principal components. For 
each HNSCC tumor sample, we determined the top 20 nearest neighbors from 
either spontaneous or TGF-β-driven EMT conditions using the k-nearest-neighbor 
search implemented in the FNN R package using the get.knnx function specifying 
kd_tree as the search algorithm. Finally, the mean pseudospace values for the top 
20 MCF10A nearest neighbors were used to assign a pseudospace value for each 
HNSCC tumor cell.

Reconstruction of HNSCC tumor cell trajectories and alignment to MCF10A 
EMT trajectories. We chose the four tumor samples with the highest number of 
cells after applying the exclusion criteria described above (HNSCC17, HNSCC18, 
HNSCC20 and HNSCC22). Reconstruction of HNSCC trajectories was performed 
as described above for MCF10A and HuMEC cells with the exception that genes 
expressed in at least 50 cells across all tumors were used as the feature genes for the 
setOrderingFilter function in Monocle2. Dynamic time warping of HNSCC and 
either spontaneous or TGF-β-driven EMT trajectories was performed as previously 
described with the exception that alignment genes from either spontaneous or 
TGF-β-driven EMT trajectories were set as alignment genes and the open.begin 
and open.end parameters of the dtw function in the DTW R package were set to 
TRUE to allow alignment of HNSCC tumor samples anywhere along the MCF10A 

trajectories. The dtwPlot function from the DTW R package was used to visualize 
the alignment of HNSCC trajectories to either MCF10A spontaneous or TGF-β-
driven EMT trajectories.

Cloning, lentiviral packaging and transduction of CROP-seq libraries. CROP-
seq lentiviral vector (Addgene) was prepped for sgRNA library insertion as 
described52. Briefly, vector was digested using BsmBI (New England Biolabs) and 
fast alkaline phosphatase (ThermoFisher Scientific). Oligonucleotides (IDT), each 
containing an sgRNA and homology for Gibson ligation, were designed as follows:

[U6 homology]-[sgRNA]-[sgRNA backbone homology]
5′-tatcttGTGGAAAGGACGAAACACC[G]-[20 bp sgRNA]-gttttagagctaGAA

Atagcaagttaaaataagg-3′where the addition of the G immediately upstream of the 
sgRNA ensures transcription from pol III promoters.

Oligonucleotides (overall design and individual sgRNA sequences can be found 
in Supplementary Table 10) were made double-stranded by PCR with primers 
against the invariant regions. The digested CROP-seq vector (10 fmols) and 
200 fmols of double-stranded oligonucleotides were ligated using the In-Fusion HD 
kit (Clontech) by incubation at 50 °C for 1 h. Libraries were then transformed into 
stellar competent cells (Clontech), transformations were diluted in 250 µl of LB, 
spread onto 6 LB agar plates containing ampicillin and bacteria culture at 30 °C for 
24 h. Resulting colonies were scraped with LB, pooled and vector recovered using 
a DNA midi kit (Qiagen). Lentivirus was generated by transfecting HEK293T in 
MCF10A media lacking Pen-Strep with our CROP-seq library using the ViraPower 
lentiviral packaging mix (ThermoFisher Scientific) according to manufacturer’s 
instructions. Collected lentiviral supernatant was filtered using a 45 µm 
steriflip vacuum filter (Fisher Scientific). MCF10A-Cas9 cells were transduced 
with increasing amounts of the CROP-seq lentiviral library and selected with 
puromycin, retaining transduced cells that had an approximate multiplicity of 
infection of 0.3.

Enrichment of sgRNA containing transcripts and genotype assignment. For 
CROP-seq experiments, a nested PCR was performed on 5–10 ng of unsheared 
cDNA to enrich for sgRNAs positioned on the 3′ UTR of the puromycin 
resistance gene transcripts. All oligonucleotide sequences used for enrichment of 
sgRNA containing transcripts can be found in Supplementary Table 10. Briefly, 
PCR reactions were performed using a P7 reverse primer equivalent to the one 
introduced by the oligo containing beads in the 10X Chromium Single-cell 3′ 
solution V1 (5′- CAAGCAGAAGACGGCATACGA -3′). For the first PCR, the 
forward primer directed toward the beginning of the U6 promoter was:

5′-TTTCCCATGATTCCTTCATATTTGC -3′
For the second PCR, the forward primer binds at the beginning of the sgRNA 

and adds the standard Nextera R1 sequence:
5′-  T CGTCGGCAGCGTCAGATGTGTATAAGAGACAGcTTGTGGAAAGG

ACGAAACAC -3′
In the final PCR, amplicons were indexed with standard Nextera P5 index 

primers:
5′-AATGATACGGCGACCACCGAGATCTACAC[10 bp Index]

TCGTCGGCAGCGTC -3′
A 1× Ampure cleanup was performed after each PCR. A fifth of PCR1 was 

added to PCR2 and a 25th of PCR2 was added to PCR3. Libraries were sequenced 
as spike-ins with transcriptome scRNA-Seq libraries. Final cellular barcodes and 
UMIs were extracted from position sorted BAM file output by Cell Ranger 1.3.1. 
We then attempted to find a perfect match for sequences preceding the sgRNA 
(GTGGAAAGGACGAAACACCG) or used a striped Smith–Watterman alignment 
to locate the sequence within an error tolerance of 2 bp shorter than the expected 
sequence. For each match or alignment, the sgRNA sequence is extracted and 
compared to a whitelist of all sgRNA within an edit distance of half the minimum 
distance between any pair of guides in our sgRNA library tracking matches for 
each cell. Chimeric sequences were removed by the approach as detailed in a 
previous report48. sgRNA sequences with over three reads accounting for more 
than 7.5% of sgRNA reads assigned to a given cell were assigned to each cell. These 
assignments were combined with the filtered gene expression matrix created by 
Cell Ranger to assign high-quality cells.

t-SNE and distribution of knockout cells across PCA space. We performed PCA 
on a matrix composed of cells each containing only one guide from our CROP-seq 
screen and gene expression values for genes expressed in more than 50 cells and 
reduced dimensions to 25 principal components. t-SNE was initialized in this PCA 
space to reduce to two t-SNE dimensions. We then performed louvain clustering 
across PCA space. A chi-square test was performed to determine whether the 
distribution of a sgRNA and targets in PCA was significantly different compared 
to NTC at an FDR cutoff of 5%. Knockouts whose distribution was significantly 
different from NTC were subjected to further analysis. For each sgRNA we 
derived a weight to estimate the functional editing rate using an expectation-
minimization approach by first modeling the PCA distribution as a mixture of 
cells with functional and non-functional edits where the mixing parameter is the 
relative functional edit rate for the sgRNA; estimating the weighted average of 
the empirical PCA distribution for each guide; and estimating relative functional 
edit rate as the one that maximizes the observed PCA distribution. Weighted 
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contingency tables were then generated containing the PCA clusters and weighted 
cell counts across clusters. Fisher’s exact test was used to identify knockouts 
enriched across PCA clusters. Chi-square and Fisher’s exact test were performed 
using chisq.test and fisher.test functions in R, respectively.

Reproducibility of spatially dependent differential gene expression within our 
pooled CROP-seq screen. Differential gene expression analysis between isolated 
cell fractions was performed for cells expressing non-targeting control guide RNAs 
from our pooled CROP-seq screen under spontaneous and TGF-β-driven EMT 
conditions using a full model of ‘y ~ cell_fraction’. The overlap of DEGs was then 
compared to initial spatial experiments in MCF10A. The correlation (Pearson’s r)  
of beta coefficients between cells from our initial spatial experiments and cells 
expressing non-targeting control guide RNAs across the full list of original spatial 
DEGs was calculated using the cor.test function in R.

Trajectory reconstruction of CROP-seq loss-of-function screen and 
calculating knockout enrichment across pseudospace. Spontaneous and  
TGF-β-driven EMT trajectories of our CROP-seq loss-of-function screen  
were individually constructed and aligned as described above. To identify 
changes in gene expression along pseudospace on gene editing we subsetted  
cells expressing sgRNAs against a target or non-targeting controls, estimated 
gene-level dispersions and performed a differential gene expression analysis 
using a full model of ‘y ~ pseudospace*genotype’ and a reduced model of  
‘y ~ pseudospace’. After repeating for all targets, P values were corrected 
for multiple hypothesis testing using the Benjamini–Hochberg procedure. 
Differential gene expression analysis of the effect of each individual knockout 
on gene expression over pseudospace is dependent on the rate of non-functional 
edits, the penetrance of the resulting phenotype and the number of cells 
expressing sgRNAs against a particular target in our screen. To overcome 
these challenges and identify changes in the distribution of edited cells 
along EMT, cells were then clustered according to where cells accumulated 
along pseudospace into pseudospatial regions along spontaneous and TGF-β 
pseudospace coordinates using the density peak algorithm17 implemented in 
Monocle2 using the clusterCells function. As not all guide RNAs are equally 
efficient and not all edited cells contain an edit that leads to loss-of-function 
we used an expectation-maximization approach to estimate the functional edit 
rate of every guide RNA relative the most efficient guide RNA for a target as 
described53. Briefly, we modeled the distribution of guide RNA containing cells 
across pseudospatial regions as a mixture of cells with a functional edit and 
the distribution of cells expressing non-targeting control guide RNAs with the 
mixing parameter being the functional edit rate for a particular guide RNA. For 
the expectation step of our model, we estimate the distribution of cells with a 
functional edit as the weighted average of the relative functional edit rate. Lastly, 
for the maximization step, we chose the relative function edit rate for a guide 
RNA as that which maximizes the likelihood of the observed distribution of cells 
expressing a guide RNA across pseudospatial regions under the mixture model. 
We then used these guide RNA weights to arrive at weighted cell counts of guide 
RNA containing cells across pseudospatial regions.

We assessed whether the distribution of guide RNA containing cells as well as a 
random subset of non-targeting control cells was significantly different compared 
to the larger pool of non-targeting control expressing cells across pseudospatial 
regions using a chi-square test. To determine an empirical FDR, we repeated this 
procedure for 1,000 iterations and calculated the rate at which cells expressing 
guide RNAs against a target were identified as more significantly distributed across 
regions compared to the random subset of non-targeting control cells. To obtain 
a score for the enrichment of differentially distributed targets (FDR < 0.1) across 
pseudospatial regions, we calculated the odds ratio for each target-region pair using 
fisher.test in R with the presence or absence of non-targeting control cells in the 
region and background as failures in our contingency tables. Targets accumulated in 
at least one region at an enrichment score (log2 of the odds ratio) of 1 or higher were 
regarded as strongly enriched. Finally, hierarchical clustering of the enrichment 
score across pseudospatial regions for differentially distributed targets was used to 
visualize the accumulation of cells across pseudospace using the pheatmap function 
in the pheatmap package specifying ward.D2 as the clustering method.

Mean expression of enriched targets in HNSCC tumor cells. Expressed cell 
surface receptors and transcription factors were identified as those expressed 
across a minimum of 50 cells in tested HNSCC tumors. To determine the mean 
expression levels of enriched targets from our CRISPR-Cas9 screen in HNSCC 
tumors we log10 normalized gene expression for the defined genes after library 
size normalization and addition of a pseudocount of 1. Then the mean expression 
level across all cells for a given tumor were averaged. Results were visualized as a 
heatmap of enriched target gene expression levels using the pheatmap function in 
the pheatmap R package. Expression profiles were clustered specifying ward.D2 
as the clustering method. A column annotation was added depicting the relative 
partial EMT rank for every tumor as observed by Puram et al.

Statistical methods. Differential gene expression analyses were performed using 
the differential gene test implemented in Monocle2 and test results corrected for 
multiple hypothesis testing using the Benjamini–Hochberg procedure. Wilcoxon 
rank-sum test was used to determine statistical significance of the differences in 
aggregate gene expression scores for cells across various treatments with correction 
for multiple hypothesis testing performed using the Holm procedure. Two-tailed 
Student’s t-tests were used to determine statistical significance of changes in EMT 
marker protein expression measured via flow cytometry.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data are available on GEO under accession number GSE114687. Data will also be 
provided via the Github repository described in ‘Code availability’.

Code availability
Code can be found on Github at https://github.com/cole-trapnell-lab/pseudospace.
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Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection The single cells analysis pipeline cellranger (version 1.3.0, 10X Genomics) was used to collect the data used in this article. 

Data analysis The single cells analysis package Monocle2 (version 2.6.3) was used in this article. A copy of the analyses performed will be available for 
distribution on github upon publication.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Data is  available on GEO under accession number GSE114687 and provided via a Github repository upon publication.
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Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size For the initial pseudospatial analysis experiments pertaining to Figures 1 and 2 we determined 2000 cells per fraction to be a reasonable 
number to robustly identify the underlying trajectory of cells in a well. For single-cell loss of function experiments (Figures 3 and 4), the 
number of cells for single cell RNA-Seq were determined by obtaining a reasonable amount of coverage in terms of minimum number of cells 
per target (roughly more than 50 cells per genotype). No statistical methods were used to predetermine sample sizes.

Data exclusions No data exclusions

Replication A quantitative comparison of the results of our initial pseudospatial experiments pertaining to Figures 1 and 2 to cells expressing non-
targeting control guide RNAs within our pooled screen, pertaining to Figures 3 and 4, identified strong agreement between experiments. Flow 
cytometry experiments were performed in biological replicate (n = 4-7) and the mean and standard deviation from the mean of the 
measurements reported. Attempts at replication were successful.

Randomization Not applicable

Blinding Not applicable

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Rabbit anti-E-cadherin, Cell Signaling Technologies, #3195 lot 13. Mouse anti-N-cadherin, Cell Signaling Technologies, #14215 lot 

2. Rabbit anti-vimentin, Cell Signaling Technologies, #5741 lot 5. Mouse anti-cytoplasmic-fibronectin, Abcam, #ab6328 lot 
GR3193980-1. Rat anti-CRB3, Abcam, #ab180835 lot GR32532558-1. Mouse anti-desmoplakin I+II, Abcam #ab16434 lot 
GR3232461-2. Mouse anti-pan-Keratin, Cell Signaling Technologies #4545 lot 1.

Validation The specificity for all antibodies was confirmed by the manufacturer via immunoblotting confirming that antibodies recognize 
proteins at the expected molecular weights and via immunofluorosence staining confirming that antibodies recognize proteins 
with the expected sub-cellular localization. Additionally, anti-E-cadherin and anti-vimentin antibodies were validated for flow 
cytometry via comparison of e-cadherin low (Hela) and high (MCF7) cell lines and anti-vimentin antibody incubated cells vs. an 
IgG isotype control, respectively. All antibodies were validated by the manufacturer for specificity to their appropriate antigen.

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) MCF10A breast epithelium cells were purchased from ATCC (CRL-10317). Primary human mammary epithelial cells were 
purchased from Thermo-Fisher Scientific (A10565).
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Authentication MCF10A were not authenticated but used within 10 passages of purchase. All HuMEC experiments were performed with 
passage 4 cells.

Mycoplasma contamination MCF10A cell were tested and confirmed negative for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Not a commonly misidentified cell line.

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation MCF10A and HuMEC cells were seeded in a cloning ring in the center of each well of a 6 well dish, the next day the ring was 
removed and cells allowed to undergo a spontaneous EMT with or without TGF-B. TGF-B was replenished every 48 hours. After 7 
days, cells were harvested by trypsinization, washed twice with PBS, resuspended in 500 uL of cold PBS and 5 mL of ice cold 
ethanol were added drop-wise to cells while vortexing at low speed. Samples were washed twice with PBS containing 1% BSA 
(PBS-B) and blocked for 1 hour at room temperature wit PBS-B. Each sample was divided into two, a mix of rabbit anti-e-
cadherin/mouse anti-fibronectin or rabbit anti-vimentin/mouse anti-n-cadherin added to one of the two aliquots and samples 
incubated for 2 hours at room temperature in PBS containing 1% BSA and 0.1% tryton X-100 (PBS-TB). After which, cells were 
washed twice with PBS-TB, and incubated for 1 hour at room temperature in a mix of Alexa-488 conjugated goat anti-mouse  
and  Alexa-647 conjugated goat anti-rabbit secondary antibodies. Finally, cells were washed twice with PBS-TB and resuspended 
in PBS for flow cytometric analysis.

Instrument Data was collected on a BD Bioscience LSRII.

Software The data was collected using FACSDiva version 8 software. Data was analyzed using FlowJo 10.

Cell population abundance All expected positive cell populations were present at an abundance of 15% or higher.

Gating strategy Before analysis of fluorescence, single cells were isolated via sequential gating on SSC-A vs. FSC-A, FSC-H vs FSC-W and SSC-H vs 
SSC-W according to standard flow cytometry practices. Gates for APC-A (describing e-cadherin or vimentin levels) and FITC-A 
(describing n-cadherin or fibronectin) were set using the spontaneous EMT sample as a negative control for n-cadherin and 
fibronectin low populations and the TGFB driven EMT as a negative control for e-cadherin and vimentin low populations.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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